Der Begriff der Künstlichen Intelligenz ist nicht neu, sondern wird seit 1959 in der Forschung verwendet. Er spiegelt die Vision wider, die menschliche Intelligenz anhand von Algorithmen nachzubilden. Dazu werden im Rahmen der KI-Forschung, die als Teilgebiet der Informatik gilt, kognitive Fähigkeiten, wie Lernen, Planen und Problemlösen, in Form von Systemen, Verfahren und Algorithmen entwickelt. KI beschreibt also im Kern „… Informatik-Anwendungen, deren Ziel es ist, basierend auf mathematischen, technischen Mustern (wie speziellen Programmiersprachen, Algorithmen), intelligent zu agieren". Dazu sind in unterschiedlichen Anteilen bestimmte Kernfunktionen notwendig, wie:

  • Informationen und Daten erkennen und erfassen ("Wahrnehmen"; "Speichern/Erinnern"),
  • Interpretieren ("Verstehen" und "Schlussfolgerungen ziehen"),
  • Autonom zielgerichtet agieren und Prozesse steuern ("Handeln") und
  • Lernen.[1]

Doch wo ist KI bereits im Arbeitsleben und in der Freizeit präsent? I. d. R. nutzen die meisten Personen, die ein Smartphone besitzen, bereits heute täglich Apps, welche anhand selbstlernender Software (also Künstlicher Intelligenz) gesteuert werden. Beispiele sind Spotify, Google Maps oder auch Facebook. Weitere bekannte Beispiele Künstlicher Intelligenz sind Strategie- und Quizspiele (Schach, Go, Jeopardy etc.) oder Computerprogramme, die in der Medizin Krankheitsdiagnosen liefern. Entsprechende Systeme sind Alpha-Zero und AlphaGo von Google oder Watson von IBM.

Das dahinterstehende Prinzip ist immer gleich: Es wird eine große Menge Daten gesammelt und, basierend auf entsprechend zuvor programmierten bzw. festgelegten Kriterien und mathematischen Modellen, analysiert und ausgewertet. Anhand dieser Ergebnisse trifft die selbstlernende Software Entscheidungen und löst entsprechende Handlungen/Aktionen aus. Um dies realisieren zu können, wurden verschiedene KI-Technologien (Berechnungs- und Simulationsverfahren) entwickelt, nach denen die KI "agiert". Die am häufigsten eingesetzte Methode ist das sog. maschinelle Lernen. Maschinen oder Systeme, deren Steuerung auf maschinellem Lernen basiert, führen Berechnungsschritte automatisiert und ohne explizite Programmierung eines konkreten Lösungswegs durch. Somit können die Verfahren und Algorithmen Strukturen aus Beispieldaten aufgreifen und Modelle entwickeln, die dann auf neue, zuvor noch nicht bekannte, Daten angewendet werden können. Man bezeichnet solche, auf sehr komplexen künstlichen neuronalen Netzwerken basierende maschinelle Lernverfahren, auch als Deep-Learning-Verfahren, welche ebenfalls ein Teilgebiet der Künstlichen Intelligenz darstellen (vgl. Abb. 1).[2]

Abb. 1: Abgrenzung der Begriffe Künstliche Intelligenz, maschinelles Lernen und Deep-Learning[3]

[1] Offensive Mittelstand (2018): Potenzialanalyse Arbeit 4.0. Künstliche Intelligenz für die produktive und präventive Arbeitsgestaltung nutzen: Ein Selbstbewertungscheck zur Einführung der neuen 4.0-Technologien, Heidelberg, verfügbar unter: https://www.check-arbeit40.de/check-arbeit40/daten/mittelstand/pdf/Potentialanalyse_Arbeit_4.0.pdf, zugegriffen: 29.10.2019, S. 23.
[2] Terstegen (2019): Künstliche Intelligenz in der Arbeitswelt. Leistung & Entgelt (2):3–45
[3] In Anlehnung an Hatiboglu/Schuler/Bildstein/Hämmerle (2019): Einsatzfelder von künstlicher Intelligenz im Produktionsumfeld. Kurzstudie im Rahmen von "100 Orte für Industrie 4.0 in Baden-Württemberg", verfügbar unter: https://www.i40-bw.de/wp-content/uploads/Studie-Einsatzfelder-KI-im-Produktionsumfeld.pdf, zugegriffen: 16.9.2019, S. 8.

Das ist nur ein Ausschnitt aus dem Produkt Arbeitsschutz Office Professional. Sie wollen mehr? Dann testen Sie hier live & unverbindlich Arbeitsschutz Office Professional 30 Minuten lang und lesen Sie den gesamten Inhalt.


Meistgelesene beiträge